Note for course TF 1: Intro to TF for AI, ML and DL

Anh-Thi Dinh

Basic DL on MNIST

1import tensorflow as tf
2
3# stop the training with condition
4class myCallback(tf.keras.callbacks.Callback):
5    def on_epoch_end(self, epoch, logs={}): # compare at the end of each epoch
6        if(logs.get('accuracy') > 0.99):
7            self.model.stop_training = True
8
9mnist = tf.keras.datasets.mnist
10(x_train, y_train),(x_test, y_test) = mnist.load_data()
11x_train, x_test = x_train / 255.0, x_test / 255.0 # normalize
12
13callbacks = myCallback() # define the callback
14
15model = tf.keras.models.Sequential([
16    tf.keras.layers.Flatten(input_shape=(28, 28)), # Takes that square and
17                                                   # turns it into a 1 dim
18    tf.keras.layers.Dense(512, activation=tf.nn.relu),
19    tf.keras.layers.Dense(10, activation=tf.nn.softmax) # 10 outputs
20])
21
22model.compile(optimizer='adam',
23              loss='sparse_categorical_crossentropy',
24              metrics=['accuracy'])
25
26model.fit(x_train, y_train, epochs=10, callbacks=[callbacks])
Comments (notebook):
  1. Adding more Neurons we have to do more calculations, slowing down the process, but get more accurate.
  1. The first layer in your network should be the same shape as your data.
  1. The number of neurons in the last layer should match the number of classes you are classifying for.
  1. Extra layers are often necessary.
  1. Flatten as the name implies, converts your multidimensional matrices (Batch.Size x Img.W x Img.H x Kernel.Size) to a nice single 2-dimensional matrix: (Batch.Size x (Img.W x Img.H x Kernel.Size)). During backpropagation it also converts back your delta of size (Batch.Size x (Img.W x Img.H x Kernel.Size)) to the original (Batch.Size x Img.W x Img.H x Kernel.Size).
  1. Dense layer is of course the standard fully connected layer.
CNN layers, cource of image.

Basic DL on Fashion-MNIST

1# the same as in MINST
2# different at below line of loading data
3mnist = tf.keras.datasets.fashion_mnist

Basic CNN on Fashion-MNIST

1import tensorflow as tf
2mnist = tf.keras.datasets.fashion_mnist
3
4class myCallback(tf.keras.callbacks.Callback):
5    def on_epoch_end(self, epochs, logs={}) :
6        if(logs.get('accuracy') is not None and logs.get('accuracy') >= 0.998) :
7            print('\\nReached 99.8% accuracy so cancelling training!')
8            self.model.stop_training = True
9
10(training_images, training_labels), (test_images, test_labels) = mnist.load_data()
11# Why reshape?
12# The first convolution expects a single tensor containing everything,
13# so instead of 60000 28x28x1 items in a list, we have a single 4D list
14# that is 60000x28x28x1
15#
16# training_images' shape (before reshape): (60000, 28, 28)
17# training_images' shape (after reshape): (60000, 28, 28, 1)
18# trainaing_labels' shape: (60000,)
19training_images=training_images.reshape(60000, 28, 28, 1)
20training_images=training_images / 255.0
21test_images = test_images.reshape(10000, 28, 28, 1)
22test_images=test_images/255.0
23
24model = tf.keras.models.Sequential([
25  tf.keras.layers.Conv2D(64, (3,3), activation='relu', input_shape=(28, 28, 1)),
26  tf.keras.layers.MaxPooling2D(2, 2),
27  tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
28  tf.keras.layers.MaxPooling2D(2,2),
29  tf.keras.layers.Flatten(),
30  tf.keras.layers.Dense(128, activation='relu'),
31  tf.keras.layers.Dense(10, activation='softmax')
32])
33
34model.compile(optimizer='adam',
35              loss='sparse_categorical_crossentropy',
36              metrics=['accuracy'])
37
38callbacks = myCallback()
39
40model.fit(training_images, training_labels, epochs=5, callbacks=[callbacks])
41test_loss = model.evaluate(test_images, test_labels)
1model.summary() # model detail
1Model: "sequential_1"
2_________________________________________________________________
3Layer (type)                 Output Shape              Param
4=================================================================
5conv2d (Conv2D)              (None, 26, 26, 64)        640
6                             # for every image, 64 convolution has been tried
7                             # 26 (=28-2) because we use 3x3 filter and we can't
8                             # count on edges, so the picture is 2 smaller on x and y.
9                             # if 5x5 filter => 4 smaller on x and y.
10_________________________________________________________________
11max_pooling2d (MaxPooling2D) (None, 13, 13, 64)        0
12_________________________________________________________________
13conv2d_1 (Conv2D)            (None, 11, 11, 64)        36928
14_________________________________________________________________
15max_pooling2d_1 (MaxPooling2 (None, 5, 5, 64)          0
16_________________________________________________________________
17flatten_1 (Flatten)          (None, 1600)              0
18_________________________________________________________________
19dense_2 (Dense)              (None, 128)               204928
20_________________________________________________________________
21dense_3 (Dense)              (None, 10)                1290
22=================================================================
23Total params: 243,786
24Trainable params: 243,786
25Non-trainable params: 0
Refs:
  1. Kernel in image processing: examples with images.
  1. Pooling layer: non-linear down-sampling.
More?
  1. Image Filtering — Lode's Computer Graphics Tutorial
  1. Applying Convolutions on top of our Deep neural network will make training → It depends on many factors. It might make your training faster or slower, and a poorly designed Convolutional layer may even be less efficient than a plain DNN!
  1. What is a Convolution? → A technique to isolate features in images
  1. What is a Pooling? → A technique to reduce the information in an image while maintaining features
  1. How do Convolutions improve image recognition? → They isolate features in images
  1. After passing a 3x3 conv filter over a 28x28 image, how big will the output be? → 26x26{:.img-30}
    1. 7x7 to 5x5 (source)
  1. After max pooling a 26x26 image with a 2x2 filter, how big will the output be? → 13x13

Visualizing the Convolutions and Pooling

Using layer API, something like below, check more in the notebook.
1import matplotlib.pyplot as plt
2f, axarr = plt.subplots()
3
4from tensorflow.keras import models
5layer_outputs = [layer.output for layer in model.layers]
6activation_model = tf.keras.models.Model(inputs = model.input, outputs = layer_outputs)
7
8for x in range(0,4):
9    f1 = activation_model.predict(test_images[FIRST_IMAGE].reshape(1, 28, 28, 1))[x]
10    axarr[0,x].imshow(f1[0, : , :, CONVOLUTION_NUMBER], cmap='inferno')
11    axarr[0,x].grid(False)
12    ...

Using real-world images

An example of classifying horses and humans!

ImageGenerator

1# make images more used for training
2# (focus on object, split cleary objects, label images,...)
3# also help to augmenting data (rotate, skew, flip,...)
4from tensorflow.keras.preprocessing.image import ImageDataGenerator
5
6train_datagen = ImageDataGenerator(rescale=1./255)
7    # normalize -> No need to convert images and then put in the training
8    # do the scaling on the fly
9train_generator = train_datagen.flow_from_directory(
10    train_dir, # dir contains the dir containing your images
11               # -> be careful!
12    target_size=(300, 300), # images will be resized when loaded, genial!
13                            # because NN always needs that!
14                            # -> experimenting with diff sizes without
15                            # impacting your source data
16    batch_size=128,
17    class_mode="binary"     # 2 diff things
18)
19
20test_datagen = ImageDataGenerator(rescale=1./255) # normalize
21validation_generator = test_datagen.flow_from_directory(
22    validation_dir, # dir contains the dir containing your images
23    target_size=(300, 300),
24    batch_size=32,
25    class_mode="binary"
26)

ConvNet with ImageGenerator

More docs:
Loading comments...